THE SECURITY
TOOLS GAP

ACADEMIC EVIDENCE
VS.
VENDOR CLAIMS

xeinos

| March 2025



FRAMING THE PROBLEM

Security tool vendors promise comprehensive protection and vulnerability
detection. Yet, independent academic research tells a different story —
one of overstated detection rates, hidden false positives, and
underestimated implementation complexity.

This white paper presents a critical analysis of the gap between vendor
marketing claims and real-world tool performance, drawing on peezr-
reviewed studies from leading universities and research institutions.

We examine five «critical areas where academic research directly
contradicts common vendor claims:

- Benchmark manipulation and artificial testing environments
- Actual detection rates for static analysis tools

- False positive rates and their operational impact

- Coverage limitations in black-box fuzzing approaches

- Integration challenges in a continuous testing environment

This analysis provides security leaders with objective evidence to
evaluate vendor claims and shape better-informed security testing
strategies.



INDUSTRY CLAIMS
THE SECURITY TOOLS MARKETING NARRATIVE

Security tool vendors make strong claims about their products' ability
to secure modern software environments. These claims often include:

- High detection accuracy:

"Find and fix vulnerabilities with real-time feedback and reduce flaws by up to
60% with IDE scans." — Veracode™

- Minimal false positives:

"Checkmarx SAST combines both speed and security to 1improve developer
experience — up to 90% faster with 80% lower false positives." — Checkmarx™

- Comprehensive vulnerability coverage:

“Our SAST technology identifies hundreds of different types of security issues
that are meaningful and relevant—all during development.” — SonarQube™

- Maximized code coverage with fuzzing:

“BeSTORM™ performs across all communication standards (even complex standards,
such as SIP), and levels, including network, protocol, file, hardware, DLL and
API. BeSTORM delivers an exhaustive search of all possible input combinations
to test input implementation for weaknesses.” - Fortra®

- CI/CD ready:

“with Black Duck, you can integrate SAST seamlessly into your development and
DevOps workflows and toolchains.” — Black Duck Software, Inc™ on Coverity™

However, independent academic research consistently contradicts these
narratives, revealing substantial gaps between what vendors claim and
how tools perform in real-world environments.

Disclaimexr: All trademarks and brand names referenced in this report are the property of
their respective owners. Their mention herein is purely illustrative and does not imply
affiliation, sponsorship, endorsement, or recommendation. References have been selected
solely based on their representativity of specific marketing points and clarity. No
judgments or evaluations regarding the adequacy or quality of any specific tools or
products are implied or should be inferred.



BENCHMARK MANIPULATION
THE ARTIFICIAL TESTING PROBLEM

ACADEMIC FINDINGS

Multiple academic studies have identified systematic issues with how
bench-marking environments are constructed:

- Artificial Test Cases:

Synthetic benchmarks, 1like those in the OWASP Benchmark Project, lack
real-world complexity, risking tool overfitting and poor performance on
diverse, real-world codebases [1][11].

- Controlled Variables:

Benchmarks intentionally exclude realistic factors such as third-party
dependencies and complex architectures, resulting in evaluations that
dot not reflect true tool effectiveness in practical scenarios [2][4].

- Selection Bias:

Benchmarks do not accurately reflect zreal-world vulnerability
distributions. This leads to inflated detection rates for specific
vulnerability types and unrealistic assessments of tool performance [11]
[12].

REAL-WORLD IMPLICATIONS

These artificial benchmarks create a fundamental disconnect between
claimed performance and real-world tool effectiveness:

- Detection rates drop drastically when applied to complex commercial
applications [4][9].

- Effectiveness decreases significantly when tested against previously
unknown vulnerabilities [5].



DETECTION RATE REALITY
THE VISIBILITY GAP

STATIC ANALYSIS LIMITATIONS

The most comprehensive study on static analyzer effectiveness, published
at ISSTA 2022, found:

- Static analyzers for C/C++ miss 47%-80% of real vulnerabilities?®, 87%
for JavaZz.

- Combined tools still leave 30% to 70% of vulnerabilities undetected??.
- Commercial tools offer minimal to no advantage over open-source
alternatives despite higher costs [5][9].

These findings align with earlier research reporting a detection rates
of only 0-21% to 21-49% for commercial tools when tested against known
vulnerabilities®*4.

VULNERABILITY CLASS VARIATIONS

Detection effectiveness varies greatly by vulnerability type:

- Up to 70% detection of incorrect calculations but less than 20% for
improper I/0 neutralization related vulnerabilities®.

- To date, no systematic academic evaluation measures tool performance
against emexrging vulnerability classes — a gap that warrants further
investigation.

1 [4] TISSTA 2022, P. 7.

2 [9] LI ET AL., ESEC/FSE 2023, FIDING 6, P. 8.

3 [56] GOSEVA-POPSTOJANOVA AND PERHINSCHI, 2015, TABLE 3, P. 28.
4 [12] M. DELAITRE ET AL., NIST SATE V, 2018, TABLE 21, P. 25.



FALSE POSITIVE CRISIS
THE DEVELOPER BURDEN

ACADEMIC MEASUREMENT

False positives zrepresent one of the most significant operational
challenges with static application security testing (SAST):

- In 2018, a NIST report documented false positive rates ranging from 25
to 80%+* for leading commercial static analyzers.

- Combining multiple analyzers to improve detection increased false
positives by an additional 15%2 to 60%3, creating diminishing retuzrns.

- High false positive rates are the main reason developers abandon these
tools [6].

OPERATIONAL IMPACT

The real cost of false positives goes beyond triage and resolution:

- With false positive rates often far exceeding the recommended 20%
[13], static analysis tools place a significant triage burden on
developers and AppSec teams [6].

- Teams develop alert fatigue, ignoring legitimate findings [6].

This burden diverts engineering capacity from development and real
security work and creates a false sense of coverage.

CLAIMS IN SAST ADVANCEMENT

Some vendors claim to offer a new generation of SAST tools with
significantly 1lower false positive rates. However, no rigorous
independent evaluation exists to date.

[12] NIST 2018, TABLE 14, P. 30.
[6] ISSTA 2022, SECTION 5.2.
3 [9] LI ET AL., ESEC/FSE 2023, FINDING 6, P. 8.



BLACK-BOX FUZZING LIMITATIONS
THE COVERAGE PROBLEM

COVERAGE CHALLENGES IN PRODUCTION APPLICATIONS

While fuzzing is effective in specific contexts, research highlights
limitations in black-box fuzzing:

- Coverage plateaus early, leaving large portions untested [6][13][15].
- Coverage degrades as complexity increases [9].

TEST CASES GENERATION EFFECTIVENESS

The ability of black-box fuzzers to generate effective test cases varies
significantly based on application complexity and input design:

- For complex input validation, fuzzers rarely achieve significant code
coverage beyond input layers [2].

- Industry-specific protocols and binary formats reduce coverage further
[9].

- State-dependent vulnerabilities are routinely missed [2][9].

INDEPENDENT EVALUATION

While +the technical 1limitations of black-box fuzzers are well-
documented, there is a lack of recent independent academic assessments
of commercial tools. ProFuzzBench [11] and Magma [6] could help bridge
this gap.



INTEGRATION AND OPERATIONAL CHALLENGES
THE HIDDEN COSTS

Security tools often appear “plug-and-play” or «close in marketing
materials. In reality, achieving effective real-world performance
demands custom engineering work, tool fine-tuning, and ongoing
adaptation.

SETUP & INTEGRATION COMPLEXITY

Security tools often require more effort than vendors disclose:

- Custom Test Setup:

Black-box fuzzers need custom harnesses and input generators for real-
world apps [2][6][9].

- Fine-Tuning SAST:

Static analyzers require extensive tuning, sometimes taking months [16].
- CI/CD Compatibility:

Black-box fuzzers often unsuitable for fast-paced CI/CD due to 1long
runtimes and high resource needs [14] while SAST +tools integration
depends on careful configuration and tuning [4][5][6][9].

AUTHENTICATION & STATEFUL TESTING LIMITATIONS

- Authenticated Testing:

Requires custom scripting for login workflows and session handling [9].
- State Management:

Without zrobust state mechanisms, +tools miss multi-step interaction
vulnerabilities. Even stateful grammar-based black box fuzzers require
extensive configuration for custom protocols and will miss variations in
standard ones. [9]

ONGOING MAINTENANCE & ADAPTATION

As applications evolve, both fuzzers and static analyzers require
ongoing tuning — including revising zrules, updating test inputs, and
adapting to new frameworks — to maintain effectiveness [3][4][14][17].



PRACTICAL GUIDANCE
EVALUATING TOOLS BEYOND MARKETING CLAIMS

BENCHMARK ASSESSMENT FRAMEWORK

Research highlights key questions that security leaders should ask when
evaluating security tools to avoid misleading vendor claims

- Were tests conducted on real-world, complex applications, not just
simplified test cases?

- Has the tool been tested against previously unknown vulnerabilities?

- Does the methodology disclose exact testing parameters and application
characteristics?

- Do published metrics include false positive rates, false negative
rates, coverage, and implementation costs?

- Are the results independently verified by third parties without vendor
funding?

ACADEMIC-INFORMED SELECTION CRITERIA

Research suggests several evidence-based criteria for selecting and
evaluating security tools:

- Empirical evidence: Prioritize tools with performance verified by
independent evaluation, ideally academic research.

- Coverage transparency: Request detailed coverage metrics and detection
rates. The number of found vulnerabilities alone says little about depth
or reliability.

- Developer experience: Evaluate how the tool impacts daily workflows —
false positives, feedback latency, and friction in local development.

- Operational integration: Assess the engineering effort zrequired to
implement, integrate, and maintain the tool across environments,
including CI/CD compatibility and infrastructure overhead.

- Complementary approaches: No tool is comprehensive — security leaders
should build a multi-layered strategy combining multiple tools and
techniques to address known gaps.



CONCLUSION
TOWARD EVIDENCE-BASED SECURITY

The academic evidence presented in this paper zreveals a troubling
disconnect between security vendor marketing claims and real-world tool
performance.

Organizations that rely on vendor benchmarks without critical evaluation
risk false confidence and misallocated security resources — creating
blind spots that attackers can exploit and leaving security teams to
answer for failures they cannot prevent.

Security must move beyond vendor narratives. An effective security
strategy starts with evidence-based evaluation and independent
verification of tool performance.

By understanding the limitations documented in peer-reviewed research,
security leaders can:

- Set realistic expectations for security tool capabilities.

- Allocate resources to address actual gaps, not just those vendors
choose to highlight.

- Implement complementary approaches that go beyond a single tool or
technique.

The path forward requires a shift to evidence-based security decision-
making, with a focus on independent, verifiable performance data, not
just marketing claims.



REFERENCES

10.

11

12

. OWASP Benchmark Projet: https://owasp.org/www-project-benchmark/
.Jason Bau, Elie Bursztein, Divij Gupta, and John C. Mitchell. 2010.

State of the Art: Automated Black-Box Web Application Vulnerability
Testing. In Proceedings of the 2010 IEEE Symposium on Security and
Privacy (SP '10). IEEE, 332-345.

.Andrew Austin and Laurie Williams. 2011. One Technique is Not Enough:

A Comparison of Vulnerability Discovery Techniques. In Proceedings of
the 2011 International Symposium on Empirical Software Engineering
and Measurement (ESEM '11). IEEE, 97-106.

.Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An

Empirical Study on the Effectiveness of Static C Code Analyzers for
Vulnerability Detection. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA '22),
pages 544-555.

.Goseva-Popstojanova, K., & Perhinschi, A. (2015). On the Capability

of Static Code Analysis to Detect Security Vulnerabilities.
Information and Software Technology, 68, 18-33.

.Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why

Don't Software Developers Use Static Analysis Tools to Find Bugs?
Proceedings of the 35th 1International Conference on Software
Engineering (ICSE).

.Hazimeh, A., Herrera, A., & Payer, M. (2020). Magma: A Ground-Truth

Fuzzing Benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 4(3), 1-29.

.Cristian Daniele, Seyed Behnam Andarzian, and Erik Poll. 2024.

Fuzzers for Stateful Systems: Survey and Research Directions. ACM
Computing Surveys 56, 9, Article 222 (2024)

.Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei

Liu, Yang Liu, and Yixiang Chen. 2023. Comparison and Evaluation on
Static Application Security Testing (SAST) Tools for Java. In
Proceedings of the 31st Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2023).

Roberto Natella and Van-Thuan Pham. 2021. ProFuzzBench: A Benchmark
for Stateful Protocol Fuzzing. In Proceedings of the 30th SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA '21).

.Kayla Afanador and Cynthia Irvine. 2020. Representativeness 1in the

Benchmark for Vulnerability Analysis Tools (B-VAT). In Proceedings of
the 13th USENIX Workshop on Cyber Security Experimentation and Test
(CSET '20).

.Aurelien M. Delaitre et al. 2018. SATE V Report: Ten Years of Static

Analysis Tool Expositions. NIST Special Publication 500-326. National
Institute of Standards and Technology, Gaithersburg, MD.



13. Maria Christakis and Christian Bird. 2016. What Developers Want and
Need from Program Analysis: An Empirical Study. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering
(Singapore, Singapore) (ASE 2016). Association for Computing Machinery,
New York, NY, USA, 332-343

14. Klooster, T., Turkmen, F., Broenink, G., Ten Hove, R., & Bohme, M.
(2023). Continuous Fuzzing: A Study of the Effectiveness and Scalability
of Fuzzing in CI/CD Pipelines. In Proceedings of the 2023 IEEE/ACM
International Workshop on Search-Based and Fuzz Testing (SBFT) (pp. 25-
32).

15. Boéhme, M., & Falk, B. (2020). Fuzzing: On the Exponential Cost of
Vulnerability Discovery. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020) (pp. 713-724).

16. Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams.
2019. Challenges with Responding to Static Analysis Tool Alerts. 1In
Proceedings of the 16th International Conference on Mining Software
Repositories (MSR '19). IEEE Press, 245-249.

17. David Pérez-Palacin, Riccardo Cabassi, Raffaela Mirandola, and Catia
Trubiani. 2021. Continuous Static Analysis for Security: An Evaluation
for Real-World Usage. In Proceedings of the 15th European Conference on
Software Architecture (ECSA '21). Association for Computing Machinery,
New York, NY, USA, 151-166.



